12 research outputs found

    The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: the knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes – a review

    Get PDF
    The use of reclaimed wastewater (RWW) for the irrigation of crops may result in the continuous exposure of the agricultural environment to antibiotics, antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). In recent years, certain evidence indicate that antibiotics and resistance genes may become disseminated in agricultural soils as a result of the amendment with manure and biosolids and irrigation with RWW. Antibiotic residues and other contaminants may undergo sorption/desorption and transformation processes (both biotic and abiotic), and have the potential to affect the soil microbiota. Antibiotics found in the soil pore water (bioavailable fraction) as a result of RWW irrigation may be taken up by crop plants, bioaccumulate within plant tissues and subsequently enter the food webs; potentially resulting in detrimental public health implications. It can be also hypothesized that ARGs can spread among soil and plant-associated bacteria, a fact that may have serious human health implications. The majority of studies dealing with these environmental and social challenges related with the use of RWW for irrigation were conducted under laboratory or using, somehow, controlled conditions. This critical review discusses the state of the art on the fate of antibiotics, ARB and ARGs in agricultural environment where RWW is applied for irrigation. The implications associated with the uptake of antibiotics by plants (uptake mechanisms) and the potential risks to public health are highlighted. Additionally, knowledge gaps as well as challenges and opportunities are addressed, with the aim of boosting future research towards an enhanced understanding of the fate and implications of these contaminants of emerging concern in the agricultural environment. These are key issues in a world where the increasing water scarcity and the continuous appeal of circular economy demand answers for a long-term safe use of RWW for irrigation

    Assessing the impact of Swales on receiving water quality

    Get PDF
    Swales are one type of sustainable drainage system (SuDS) which contribute to the management of water quality in receiving waterbodies. Using a semi-quantitative approach, an impact assessment procedure is applied to the residual water quality that is carried forward to surface waters and groundwaters following treatment within a swale. Both volumetric and pollutant distributions are considered as stormwater passes through the swale system. The pollutant pathways followed by TSS, nitrate, chloride, metals (Cd, Cu, Pb, Zn) and polyaromatic hydrocarbons (PAHs) are determined for a swale receiving highway runoff. For TSS, metals and PAHs between 20% and 29% of the total mean influent pollutant load is predicted to be directed to infiltration through the underlying soils compared to between 4% and 16% of chloride and nitrate. Although surface water impacts are deemed possible, the discharges of swales to groundwaters are assessed to represent a negligible impact for effectively maintained systems

    An impact assessment methodology for urban surface runoff quality following best practice treatment

    Get PDF
    The paper develops an easy to apply desk-based semi-quantitative approach for the assessment of residual receiving water quality risks associated with urban surface runoff following its conveyance through best practice sustainable drainage systems (SUDS). The innovative procedure utilises an integrated geographical information system (GIS)-based pollution index approach based on surface area impermeability, runoff concentrations/loadings and individual SUDS treatment performance potential to evaluate the level of risk mitigation achievable by SUDS drainage infrastructure. The residual impact is assessed through comparison of the determined pollution index with regulatory receiving water quality standards and objectives. The methodology provides an original theoretically based procedure which complements the current acute risk assessment approaches being widely applied within pluvial flood risk management

    The sources, impact and management of car park runoff pollution: a review

    Get PDF
    Traffic emissions contribute significantly to the build-up of diffuse pollution loads on urban surfaces with their subsequent mobilisation and direct discharge posing problems for receiving water quality. This review focuses on the impact and mitigation of solids, metals, nutrients and organic pollutants in the runoff deriving from car parks. Variabilities in the discharged pollutant levels and in the potentials for pollutant mitigation complicate an impact assessment of car park runoff. The different available stormwater best management practices and proprietary devices are reported to be capable of reductions of between 20% and almost 100% for both suspended solids and a range of metals. This review contributes to prioritising the treatment options which can achieve the appropriate pollutant reductions whilst conforming to the site requirements of a typical car park. By applying different treatment scenarios to the runoff from a hypothetical car park, it is shown that optimal performance, in terms of ecological benefits for the receiving water, can be achieved using a treatment train incorporating permeable paving and bioretention systems. The review identifies existing research gaps and emphasises the pertinent management practices as well as design issues which are relevant to the mitigation of car park pollution

    Urban surface water pollution problems arising from misconnections

    Get PDF
    The impacts of misconnections on the organic and nutrient loadings to surface waters are assessed using specific household appliance data for two urban sub-catchments located in the London metropolitan region and the city of Swansea. Potential loadings of biochemical oxygen demand (BOD), soluble reactive phosphorus (PO4-P) and ammoniacal nitrogen (NH4-N) due to misconnections are calculated for three different scenarios based on the measured daily flows from specific appliances and either measured daily pollutant concentrations or average pollutant concentrations for relevant greywater and black water sources obtained from an extensive review of the literature. Downstream receiving water concentrations, together with the associated uncertainties, are predicted from derived misconnection discharge concentrations and compared to existing freshwater standards for comparable river types. Consideration of dilution ratios indicates that these would need to be of the order of 50–100:1 to maintain high water quality with respect to BOD and NH4-N following typical misconnection discharges but only poor quality for PO4-P is likely to be achievable. The main pollutant loading contributions to misconnections arise from toilets (NH4-N and BOD), kitchen sinks (BOD and PO4-P) washing machines (PO4-P and BOD) and, to a lesser extent, dishwashers (PO4-P). By completely eliminating toilet misconnections and ensuring misconnections from all other appliances do not exceed 2%, the potential pollution problems due to BOD and NH4-N discharges would be alleviated but this would not be the case for PO4-P. In the event of a treatment option being preferred to solve the misconnection problem, it is shown that for an area the size of metropolitan Greater London, a sewage treatment plant with a Population Equivalent value approaching 900,000would be required to efficiently remove BOD and NH4-N to safely dischargeable levels but such a plant is unlikely to have the capacity to deal satisfactorily with incoming PO4-P loads from misconnections

    Soil mobility of surface applied polyaromatic hydrocarbons in response to simulated rainfall

    Get PDF
    Polyaromatic hydrocarbons (PAHs) are emitted from a variety of sources and can accumulate on and within surface soil layers. To investigate the level of potential risk posed by surface contaminated soils, vertical soil column experiments were conducted to assess the mobility, when leached with simulated rainwater, of six selected PAHs (naphthalene, phenanthrene, fluoranthene, pyrene, benzo(e)pyrene and benzo(ghi)perylene) with contrasting hydrophobic characteristics and molecular weights/sizes. The only PAH found in the leachate within the experimental period of 26 days was naphthalene. The lack of migration of the other applied PAHs were consistent with their low mobilities within the soil columns which generally parallelled their log Koc values. Thus only 2.3% of fluoranthene, 1.8% of pyrene, 0.2% of benzo(e)pyrene and 0.4% of benzo(ghi)perylene were translocated below the surface layer. The PAH distributions in the soil columns followed decreasing power relationships with 90% reductions in the starting levels being shown to occur within a maximum average depth of 0.94 cm compared to an average starting depth of 0.5 cm. A simple predictive model identifies the extensive time periods, in excess of 10 years, required to mobilise 50% of the benzo(e)pyrene and benzo(ghi)perylene from the surface soil layer. Although this reduces to between 2 and 7 years for fluoranthene and pyrene, it is concluded that the possibility of surface applied PAHs reaching and contaminating a groundwater aquifer is unlikely

    An impact assessment for urban stormwater use

    Get PDF
    The adoption of stormwater collection and use for a range of non-potable applications requires that the perceived risks, particularly those associated with public health, are addressed. Pollutant impacts have been assessed using E. coli and a scoring system on a scale of 0 to 5 to identify the magnitude of impacts and also the likelihood of exposure to stormwater during different applications. Combining these identifies that low or medium risks are generally predicted except for domestic car washing and occupational irrigation of edible raw food crops where the predicted high risk would necessitate the introduction of remedial action

    Multiclass target analysis of contaminants of emerging concern including transformation products, soil bioavailability assessment and retrospective screening as tools to evaluate risks associated with reclaimed water reuse

    Get PDF
    The occurrence of 200 multiclass contaminants of emerging concern (CECs) encompassing 168 medicinal products and transformation products (TPs), 5 artificial sweeteners, 12 industrial chemicals, and 15 other compounds was investigated in influent and effluent wastewater samples collected during 7 consecutive days from 5 wastewater treatment plants (WWTPs) located in Cyprus. The methodology included a generic solid-phase extraction protocol using mixed-bed cartridges followed by Ultra-High Performance Liquid Chromatography coupled with Quadrupole-Time of Flight Mass Spectrometry (UHPLC-QTOF-MS) analysis. A total of 63 CECs were detected at least in one sample, with 52 and 55 out of the 200 compounds detected in influents and effluents, respectively. Ten (10) out of the 24 families of parent compounds and associated TPs were found in the wastewater samples (influent or effluent). 1-H-benzotriazole, carbamazepine, citalopram, lamotrigine, sucralose, tramadol, and venlafaxine (>80 % frequency of appearance in effluents) were assessed with respect to their bioavailability in soil as part of different scenarios of irrigation with reclaimed water following a qualitative approach. A high score of 12 (high probability) was predicted for 2 scenarios, a low score of 3 (rare occasions) for 2 scenarios, while the rest 28 scenarios had scores 5–8 (unlikely or limited possibility) and 9–11 (possibly). Retrospective screening was performed with the use of a target database of 2466 compounds and led to the detection of 158 additional compounds (medicinal products (65), medicinal products TPs (15), illicit drugs (7), illicit drugs TPs (3), industrial chemicals (11), plant protection products (25), plant protection products TPs (10), and various other compounds (22). This work aspires to showcase how the presence of CECs in wastewater could be investigated and assessed at WWTP level, including an expert-based methodology for assessing the soil bioavailability of CECs, with the aim to develop sustainable practices and enhance reclaimed water reuse

    The implications of household greywater treatment and reuse for municipal wastewater flows and micropollutant loads

    Get PDF
    An increasing worldwide interest in water recycling technologies such as greywater treatment and reuse suggests that additional research to elucidate the fate of xenobiotics during such practices would be beneficial. In this paper, scenario analyses supported by empirical data are used for highlighting the potential fate of a selection of xenobiotic micropollutants in decentralised greywater treatment systems, and for investigation of the possible implications of greywater recycling for the wider urban water cycle. Potential potable water savings of up to 43% are predicted for greywater recycling based on Danish water use statistics and priority substance monitoring at a greywater treatment plant in Denmark. Adsorption represents an important mechanism for the removal of cadmium, nickel, lead and nonylphenol from influent greywater and therefore the disposal route adopted for the generated sludge can exert a major impact on the overall efficiency and environmental sustainability of greywater treatment
    corecore